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ON THE ERROR TERM OF SYMMETRIC 
GAUSS-LOBATTO QUADRATURE FORMULAE 

FOR ANALYTIC FUNCTIONS 

DAVID HUNTER AND GENO NIKOLOV 

ABSTRACT. Gauss-Lobatto quadrature formulae associated with symmetric 
weight functions are considered. The kernel of the remainder term for classes 
of analytic functions is investigated on elliptical contours. Sufficient conditions 
are found ensuring that the kernel attains its maximal absolute value at the 
intersection point of the contour with either the real or the imaginary axis. 
The results obtained here are an analogue of some recent results of T. Schira 
concerning Gaussian quadratures. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

Let w be a nonnegative weight function on the interval [-1, 1]. We study inter- 
polatory quadrature formulae of the form 

n 

(1.) Qn[f] =- EWvnf(Xv,n)1 -1<X1,n < X2,n ..< Xn,n < 11 
v=1 

which serve as estimates for the integral 
~1 

(1.2) I[f] ] w(x)f(x) dx. 

If the integrand f is analytic in some simply connected and bounded region G 
of the complex plane containing [-1,1] in its interior, then the remainder term 
Rn := I-Qn can be expressed as a contour integral over F = CG, 

(1.3) Rn[f] = 21 jKn (z;w)f(z)dz, 

where Kn (.; w) is referred to as the kernel of the functional Rn (or of the quadrature 
formula Qn), and is given by 

(1.4) Kn(z;w) qn (z) 
Pn (z) 
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Here, Pn(Z) = c(z-xl,n) (z-xn,n) is the nodal polynomial, and for z E C\[-1, 1] 
qn is given by 

(1.5) qn(z) j w(x) x)dx. 

An alternative representation for Kn (z; w) is 

(1.6) Kn(z;w) :=Rn [R ] =j w(x-dZWVfl 
_Z Z - X ~~V=1 Z-X, 

Formula (1.3) leads to the error estimate 

(1.7) JR [f] 
I ( ) max IKn(z;w) max f(z) 

(for a different approach to the estimation of Rn [f], see [6]). 
Typical choices of the contour F are concentric circles centred at the origin or 

confocal ellipses Se with foci at ?1 and sum of semiaxes Q > 1, 

(1.8) {E C :z = 1(Qe'0 +Q-1e-'O)j 0 < 0 < 27r}, Q > 1. 

The derivation of adequate bounds for RRn[f]J on the basis of (1.7) is possible 
only if good estimates for maxzcr JKn(z; w)I are available. Especially useful is 
knowledge of the location of the extremal point ( E F, at which lKnl attains its 
maximum. In such a case, instead of looking for upper bounds for maxzEr I Kn (z; w) I 
one can simply try to calculate IKn (; w)j. In general, this may not be an easy task, 
but in the case where Qn is a Gauss-type quadrature formula there exist effective 
algorithms for calculation of Kn(z; w) at any point z outside [-1, 1] (see Gautschi 
and Varga [4]). 

The problem of finding the maximum point of the kernel IKn (z; w) of Gauss- 
type quadrature formulae on circular or elliptic contours has received considerable 
attention (see [1], [2], [3], [4], [5], [7]). Typically, the results in this direction are 
obtained either for special weights (e.g., for Chebyshev weights) or under restriction 
of monotonicity type (e.g., w(x)/w(-x) is monotone). Under such assumptions, 
usually it is shown that the maximum point ( is an intersection point of the contour 
with either the real or the imaginary axis, or is located near one of these points. 

Let w be a symmetric weight function on [-1,1], i.e., w(-x) = w(x) for every 
x E [-1, 1]. We shall investigate symmetric generalized Gauss-Lobatto quadrature 
formulae associated with w, 

0f-1 n 

(1.9) Q$cT)[f] a= [f(() + (-1)lf(')(1)] + Zw$7 f(xv). 

The formulae Q(') are uniquely defined by the property that their remainder term 
Rnr) := I-Q(') vanishes identically on the set of all algebraic polynomials of degree 
at most 2(n + ) -1. In particular, QnO) is the n-point Gauss quadrature formula 

n 

(1. 1 0) QG[f] = EWG fG 1 

v=l 
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Q(n) is the (n + 2)-point Gauss-Lobatto quadrature formula 
n 

(1.11) Qn+2[f] := an [f(-1) + f(1)] + wn vf(xn) 
v=1 

and Q(2) is the (n + 2)-point Gauss-Lobatto quadrature formula with double end 
nodes QLo,d (each of these three formulae is associated with the weight function 
w). 

The kernel KIG(.;w) of the Gauss quadrature formula (1.10) has been investi- 
gated on elliptical contours in a recent paper of T. Schira [10]. 

Denote by Zr = Zr(Q) and zi = Zi(Q) the intersection points of the ellipse Se with 
the positive branches of the real and the imaginary axis, respectively; i.e., 

Q+Q 1 i(Q-Q-1) 
Zr .- , i 

2 2 

For weight functions w(x) symmetric in (-1, 1) and satisfying the condition that 
either w(x) )1 - x2 is increasing or w(x)/1 - x2 is decreasing on (0, 1), Schira 
proved that the extremum point ( coincides with Zr in the first case, and with zi 
in the second case, provided L is not less than some given value. The assumptions 
for w are satisfied; e.g., for the Gegenbauer weight function 

wo(x) := (1 - x2), a > -1, a (-1/2,1/2). 

Schira has proved a result of a similar nature for the Gauss-Lobatto quadrature 
formula (1. 11). 

Theorem A ([8, Satz 4.4]). Let KL~+2(.; w) be the kernel of the Gauss-Lobatto 
quadrature formula (1.11) associated with a symmetric weight function w on (-1, 1). 
If w(x) )1 - x2 is increasing on (0, 1), then 

maxlK42(z;w) = 'K42(zr;w) for all > e*= (1 + V) 
xCESQ 2 

(for n = 0 this result holds for all Q > 1). 

In this paper we apply Schira's approach to obtain an analogue of Theorem A 
for symmetric weight functions w such that w(x)/ 1 - x2 is decreasing on (0,1) 
(Theorem 1.2). Partially, this approach turns out to be applicable also to the 
generalized symmetric Gauss-Lobatto quadrature formulae (1.9) (Theorem 1.3). 

For any nonnegative integer a, denote by 7r$f the mth orthonormal polynomial 
with respect to the weight function 

w(,f) (x) :=(1x2),W (x) , 

and by cmf its leading coefficient (without loss of generality we assume cm > 0). 
The basic ingredient of the proof of Theorems 1.2 and 1.3 is the following expan- 
sion formula for the kernel KRf0) (.; w) of the generalized Gauss-Lobatto quadrature 
formulae (1.9). 

Theorem 1.1. The kernel K$ff)(.;w) of the generalized Gauss-Lobatto quadrature 
formulae (1.9) associated with a symmetric weight function w on (-1,1) has the 



272 DAVID HUNTER AND GENO NIKOLOV 

representation 

(1.12) 
oo (a) 

K}j)(z;w) = (w1)E Z n2 2) (z E C\[-1,1]). 

We note that the special cases a = 0 and a = 1 of Theorem 1.1 were already proved 
by Schira (see [10, Theorem 3.1] and [8, (4.13)]). 

A useful feature of the formula (1.12) is that it allows us to replace the exam- 

ination of K0) (.; w) by the examination of the terms appearing in its expansion. 
If all these terms attain their maximal moduli at Zr (or at zi), then this property 
is inherited by the kernel. With the help of Theorem 1.1 we prove the following 
theorems. 

Theorem 1.2. Let K~n+2(.; w) be the kernel of the Gauss-Lobatto quadrature 
formula (1.11) associated with a symmetric weight function w on (-1,1). If 
w(x)/)1/- x2 is decreasing on (0,1), then for n > 3 

max KnL+2 (z; w) - K42(z;w) for alln ZQ, z CEQ 

where 

3.88 if n is odd, 

13.72 if n is even. 

Theorem 1.3. Let w be a symmetric weight function such that w(x) 1 - x2 is in- 
Lo d creasing on (0, 1). Then for the kernel KnL+2 (.; w) of the Gauss-Lobatto quadrature 

formula with double end nodes we have 

maxLod(z;W)l = lK,2'd(Zr;w)1 for alloQQ:= 2 (1 + X). 

2. AUXILIARY RESULTS 

The following two lemmas are taken from Schira's work [10]. 

Lemma 2.1 ([10, Lemma 2.1]). Let w and wv be two symmetric weight functions 
on (-1,1) and let the zeros Xk,n and 5ek,n of the corresponding nth-degree orthogonal 
polynomials be arranged in decreasing order. If w/wt is increasing on (0, 1), then 
the inequalities Xk,n > 4k,n hold for k = 1,..., [n]. 

Lemma 2.2 ([10, Lemma 4.1]). The function 

z2 _ S2 
g(z) 2 2-t2 

with s, t C (0, 1) has the property that on every ellipse Se with e >L *:=o 3(1?v) 
we have 

max lg(z) I g 
(Zr) if s < t, ZCEQL g(zj) if s > t. 
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The conformal map z = (u+u-1)/2 transforms concentric circles Jul = Q (o > 1) 
into confocal ellipses Se. The Chebyshev polynomials of the first and the second 
kind are expressed as 

+ u- 
(2.1) Tn(Z) = 

U 
2 

and 
(2 . 2) ~~~~~~un+ 1 _-u-n-1 

(2.2) Un(Z) = 

respectively. We shall use the familiar notation (see [2], [3], [4]) 

(2.3) am(Q) := l(Qm + Q-m) 

The following simple lemma describes a relation between the quantities am (Q). 

Lemma 2.3. For every fixed Qo > 1 and for every nonnegative integer m the fol- 
lowing inequality holds true: 

(2.4) a2m(Q) ? dma2m+2(Q) for every Q ? Qo 

where 
Q4m +1 

(2.5) dm =g4m+2 

Proof. We examine first for which positive constants c the inequality 

(2.6) a2m+2(Q) ? cQ2a2m(Q) 

is fulfilled for every Q > Qo. Using the representation (2.3), we conclude that (2.6) 
will hold if 

4m 
- Q4m + 1 

Since the right-hand side of this last inequality increases as L increases, the choice 
4m 

- Qo 
Q4m + 1 

guarantees the validity of (2.6) for all Q > Qo. Thus, for Q ? Qo we have 
Q4m+1 Q4m+1 

a2m (Q) < 2 4m a2m+2 (Q) < 4m+2 a2m+2 (Q) 

The lemma is proved. DH 

We shall also need the simple inequalities given by the next lemma. 

Lemma 2.4. For every integer m and for every 0 E JR 

sin 2m0Tn 
(i) cs20 

< 4m2 

(ii) cos2(2m + 1)0 < (2m + 1)2. 

Let 

vm() Um -2 (Z) 
UV( (z) 

The following lemma reveals a property of the function vm (z), which may be of 
independent interest, and which can be made more precise, if necessary. 
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Lemma 2.5. For any integer m > 6 and for every Q > 2.3 we have 

max IVm (Z) = Vm(Zi)I| 
ZC&Q 

Proof. Using the differential equation 

(1 - Z2)T'(z) - zTn(z) + n2Tn(z) = 0 

and the identity Tn+1 = (n + 1)Un, we obtain 

Vm(z) _ (m - 1)Tm-i(Z)- ZUm-2(Z) 

(m + 1)Tm+1(Z)-ZUm(Z) 

For z E Se formulae (2.1) and (2.2) yield 

(2.7) lvm(Z)12 = gm(Q 2(0, 0) 

where 

gn (0 0) = n2[a2n+4(e)- cos(2n + 4)0] - 2n(n + 2) cos 20a2n+2(Q) 

(2.8) + (n + 2)2 [a2n(Q)O- cos 2nr] + 2n(n + 2) cos(2n + 2)0a2(Q). 

The cases of odd and even m require separate consideration, but, as the idea of the 
proof is the same, we restrict ourselves to studying only the case of m even. In this 
case, we have 

(2.9) gm-2 (Q, 0) = Am-2 (Q) - 2Bm-2 (Q, 0), 

where 

Am-2(Q) = (m - 2)2a2m(Q) + 2(m - 2)ma2m-2(O) 

+ m2a2m-4(Q) - 2(m - 2)ma2(Q) - M2 _ (m - 2)2, 

Bm-2(Q, 0) = 2 (m-2)mcOs2 0a2m-2(Q)- 2(m - 2)m cos2 (m- 1)0a2 (Q) 

- (m - 2)2 sin2 mO - m2 sin2(m - 2)0, 

and analogous relations hold for Am (g) and Bm (L, 0). We conclude on the basis of 
equations (2.7) and (2.9) that 

IVm(Zi)12 _ Vm(Z) 12 
= Am- 2 (Q) _ Am 2 (Q) - 2Bm-2(Q , 0) 

Am(Q) Am(Q) -2 Bm (Q,o0) 

and consequently 

sign{Ivm(zi)12 - Vm(Z)12} = sign{Am(Q)Bm-2(,0) - Am-2(Q)Bm(,0))}. 

Thus, we need to examine the sign of the last expression. After some straightforward 
(though rather tedious) calculations, in the process of which we repeatedly use the 
identity akal = (ak+l + alk411)/2, we arrive at the representation 

2m+1 

AmBm-2Am-2Bm = Ck(O)a2k(Q), 
k=O 

where 

C2m+1 (0) = 4(m - 2)mcos2 0, 

C2m-i (0) = -4(m + 2)mcos2 0, 

Cm+3 (0) = -m3(m - 2) CoS2(m - 1)0, 
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Cm+2(0) = 2m2 (m2 4) [cos2 0 - cos2 (m - 1) 0] 

- m2[(m - 2)2 sin2 mO + m2 sin2(m - 2)0], 

cm+1(0) = 2m(m + 2)[m2 + (m - 2)2] cos2 0 + m(m - 2)2(m + 2) cos2(m + 1)0 

- (m - 2)m[m2 + (m + 2)2] cos2(m - 1)0 

- 2m(m + 2)[(m - 2)2 sin2 mO + m2 sin2(m - 2)0], 

cm (0) = 2m2 (m2 - 4) [cos2 (m + 1)0 - cos2 (m - 1)0] 

+ m2[(m - 2)2 sin2(m + 2)0 - (m + 2)2 sin2(m - 2)0], 

Cm-i (0) = m(m + 2) [m2 + (m - 2)2] cos2(m + 1)0 

+ 2(m - 2)m[m2 sin2(m + 2)0 + (m + 2)2 sin2 mo] 

- 2(m-2)m[(m + 2)2 + m2] cos2 0 

- m(m - 2)(m + 2)2 cos2(m - 1)0, 

Cm-2(0) = 2m2(m2 - 4)[cos2(m + 1)0 - cos2 0] 

+ m2[m2 sin2(m + 2)0 + (m + 2)2 sin2 mO], 

Cm-3(O) = m3(m + 2) cos2(m + 1)0, 

c3(0) = -4m3 cos2 0, 

c2 (0) = 2m2 (m2 - 4) [cos2 (m - 1)0 - cos2 (m + 1)0], 

ci(0) = 4m(m 2- 4) cos2 0 + 2(m - 2)m[(m + 2)2 + M2] cos2(m -1)0 

+ 2(m + 2)m[(m - 2)2 sin2 mO + m2 sin2(m - 2)0] 

- 2(m - 2)m[m2 sin2(m + 2)0 + (m + 2)2 sin2 mO] 

- 2(m + 2)m[m2 + (m - 2)2] cos2(m + 1)0, 

co(0) = 2M2 -4) [cos2 (M - 1)0 - cos2(m + 1)0] 

+ [(m + 2)2 + M22][(M _ 2)2 sin2 mO + M2 sin2 (M - 2)0] 

- [m2 + (m - 2)2][M2 sin2(m + 2)0 + (m + 2)2 sin2 MO], 

and all the remaining coefficients are equal to zero. 
Further, we divide AmBm2 - Am-2Bm by cos2 0 and apply Lemma 2.4 to obtain 

the estimate 
(2.10) 
AmBm-2 - Am-2Bm 

> 4m(m-2)a4m+2 4m(m + 2)a4m-2 
2o 0 

- m3(m - 1)2(m -2)a2m+6 - 4m3(m - 2)2(m + 1)a2m+4 

- 6m6a2m+2 - 3m6a2m - m 6a2m2 - m6a2m-4 

- m6a6 - 3m6a4 - 1M6 a2 - lOM 6ao 

m+3 
:4m(m - 2)a4m+2 - 4m(m + 2)a4m2 - Z cja2j. 

j=o 
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Note that, for the sake of simplicity, the estimates for the coefficients of the "lower 
degree" terms, (i.e., the aj 's with indices less than 2m + 4) are rather crude. The 
reason why we may be content with such a rough estimation is that the quantities 
am (g) increase rapidly as m increases, if Q is not too close to 1, and as a result only 
the first few terms in the right-hand side of (2.10) are of importance. 

The right-hand side of (2.10) is now estimated with the help of Lemma 2.3. For 
g > 2.3 the inequality a23(Q) < dja2j+2(Q) holds, e.g., with do = 0.4, d1 = 0.2 and 
with dm = 0.19 =: d for all m > 2. Thus, we obtain successively 

10ao < 4a2, 10ao + h1a2 < 3a4, 10ao + h1a2 + 3a4 < 1.14a6, 

10ao + h1a2 + 3a4 + a6 < 0.41a8 < 0.41a2m-4, 

and repeating this procedure we finally get 

m+3 

(2.11) E aja2j < (2m6 - 6.28m5 + 5m4 + 1.04m3)a2m+6 

< 2m5(m - 2)a2,,+6 ? 2m5(m - 2)dm-2 a4m+2. 

We also have, for m > 6, 

(2.12) 4m(m + 2)a4m-2 < 4m(m - 2) + 2 d2a4m+2 

< 0.29m(m - 2)a4m+2. 

Combining (2.11) and (2.12), we obtain 

m+3 

(2.13) 4m(m - 2)a4m+2 - 4m(m + 2)a4m-2 - E Ja2j 
(2.13) ~~~~~~~~~~j=O 

> [3.71 - 2m4dm-2]m(m - 2)a4m+2. 

Therefore, to prove Lemma 2.5 for m even, it suffices to show that the quantity 
6(m) := 2m4dm-2 does not exceed 3.71 for every m > 6. The latter is easily seen, 
for 3(m) decreases monotonically as m increases and 3(6) < 3.38. 

Repetition of the above reasoning in the case of m odd leads to the same con- 
clusion. This completes the proof of Lemma 2.5. DH 

For any natural m > 2 set 
z z 

m (Z) (z2 -1) Ul (Z) Um+2 (Z) Vm (Z) (z2 - 1) 2 Um (Z) Um+2 (Z) 

Lemma 2.6. For every natural number m > 2 and for everyo >Q Q* _ v2- (1 + v3) 
we have 

max Ivm (Z) |= Vm(Zr)- 
z CEQ 

Proof. The case m = 2 is verified directly, so we suppose that m > 3. We write 

Vm(Z) = Zm(Z)(m+2(Z), 

where 

(m(Z) (z2 -)UM (Z) 
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Clearly, the lemma will be proved if we succeed in showing that for every m > 3 
and for every Q > Q* 

(2.14) max I m(Z) =m(Zr) 

Indeed, having established (2.14), we will obtain 

max lVm(z)l < max l max Jem(z)j max I m+2(Z) 

= Zr m (Zr) m+2 (Zr) = Vm (Zr) 

Using well-known properties of Chebyshev polynomials, we get 

I m 

(Z)I2 

= 
4(a2 

(Q)-cos 

20) 

where gm is defined as in (2.8). We write 

gm (Q, 0) = gm (Q, O) + (gm (Q,) - gm (Q, 0)) = Cm(Q) + 2Dm(Q,0), 

where 

Cm = m2a2m+4 - 2m(m + 2)a2m+2 + (m + 2)2a2m 

+2m(m+2)a2 -iM2- (m+2)2 

and 

Dm = 2m(m + 2) [a2m+2 sin2 0 - a2 sin2(m + 1)0] 

+ m2 sin2(m + 2)0 + (m + 2)2 sin2 m0. 

Thus 

- Vm(Z) 2 _ 4(a2 (Q)-1) 4(a2 (Q)-1 + 2sin2 0) 
Ifm (Zr) 

12 
-M (Z)12 - Cm (Q) Cm(Q) + 2Dm(Qo 0) 

and consequently 

sign{fIm(zr) 12 I 
lm(Z)12} = sign{(a2(Q)L- 1)Dm(Q, 0) - Cm(Q) sin2 0} 

sign E(Q, 0). 

The calculation of E(Q, 0) yields 

E(Q, 0) = 2m sin2 Oa2m+4 - 2(m + 2) sin2 0a2m - m(m + 2) sin2(m + l)0a4 

+ [msin(m + 2)0 + (m + 2) sin m0]2(a2 - 1) 

+ m(m + 2) sin2(i + 1)0 + 4 sin2 0. 

We ignore the last nonnegative terms and apply Lemma 2.4 to obtain 

(2.15) sin-2 OE(Q, 0) > 2ma2m+4 - 2(m + 2)a2m - m(m + 2)(m +?1)2a4. 

Now we prove that for Q > Q* the right-hand side of (2.15) is nonnegative. The 
reasoning is the same as in the final part of the proof of Lemma 2.5. According to 
Lemma 2.3, for L > Q* and for every j > 2 we have a2j < da2j+2, where we may 
choose d = 0.27. For L > Q* we obtain 

a4 < (0.27) a2m+4 

and 

2(m + 2)a2m = 2m a2m < 2m - (0.27)2a2m+4 < 0.243ma2m+4. m - 3 
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Hence 

2ma2m+4- 2(m + 2)a2m- m(m + 2)(m + 1)2a4 

> [1.757 - (m + 1)2(m + 2)(0.27)m]ma2m+4- 

The term in the square brackets is positive for m > 3, and this completes the proof 
of Lemma 2.6. D 

Next we examine the functions ,Um(Z). 

Lemma 2.7. For every natural m > 4 and for every Q > Q* we have 

(2.16) max Illm(Z) m = (zi) 1i 

where 

f 3.88 if m is even, 
= {3.72 if m is odd. 

Proof. Using the explicit form of A4 and A5 and applying Lemmas 2.3 and 2.5, we 
obtain after some lengthy but straightforward calculations that 

maxIA14(Z)j = 1jA4(Zi)l for every o > 3.88 

and 

maxIAt5(Z)j = I,5(Zi)j for every L > 3.72. 

The proof then proceeds by induction. Assuming that (2.16) is true for some natural 
m - 2 > 4, we apply Lemma 2.5 to conclude that for z E S. and L ? Q* 

Ilm(Z)I = Um2(Z) Um |(z) I/m-2() 
U'm(z) Um +2 (Z) - 

- Um (Z) Ulm (z ) lAm-2(zi) 

= I,Um(Zi)I. 

The lemma is proved. D 

3. PROOF OF RESULTS 

Proof of Theorem 1.1. It is well known that the nodes {xv},n of the generalized 

Gauss-Lobatto quadrature formulae (1.9) are exactly the zeros of 1rn the nth or- 
thonormal polynomial with respect to the weight function w(Uf) (x) - (1-X2)oW(X). 

The functions Pn Pn and qn = q=o) in this case are given by 
Pa )(X) = (12- ) 1r )(x) 

and 

qa ) (z) = 
jw 

(X)7rn ) dx. 

We observe that 

n 
q$();(z - KI (Z; W(Uf)) 
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where KG (.; w(Of)) is the kernel of the n-point Gauss quadrature formula associated 
with the weight function w(f) (x). To complete the proof of Theorem 1.1 we only 
have to repeat Schira's arguments in the proof of ([10, Theorem 3.1]). D2 

In the special case a = 1 (i.e., when Q(n) is the customary Gauss-Lobatto quad- 
rature formula Qn+2) Theorem 1.1 yields 

00 

Lo 
_ Cn+2j+2 Z 

(3.1) (Z; =-E0 Cn+2j (Z2- 1)7n+2j (Z)rn+2j+2 (z) 

(3.1) 

=: ZCn+2j+2 (Z) 
0Cn?2j O+2j(i 

where lrm is the mth orthogonal polynomial associated with the weight (1 x2)w(x), 
and cm > 0 is its leading coefficient. In particular, for the second Chebyshev weight 
function w112(x) = V1 -X2 we have 

00 

L ~~~~~~~~~z 
Kn'+2 (Z; W12) = - 

E z2 - KL+2(Z;W1/2) I tY(Z2 _ 
')Un+2j+l(Z)Un+2j+3(Z 

(3.2) 0 

-E 
Z Yjn+2j+1 (Z) 

j=O 

with positive constants -yj. 
For the kernel Kn7T$d(.; W-1/2) of the Gauss-Lobatto quadrature formula with 

double end nodes associated with the first Chebyshev weight function, Theorem 

1.1 yields 

00 

Kn+2 (Z; W-1/2) E (Z2 -1)2Un+2j+l(Z)Un+2j+3(z) 

(3.3) 0 - 
00 

ZE jVn+2j+l (Z) 
j=o 

with positive constants 6i. 

Proof of Theorem 1.2. The functions bm,(z) appearing in the expansion (3.1) can 

be expressed as 

(3.4) 'm (Z) = Um+i(Z) Um1(z)U +3(z) (3.4) Om (z) = AM+1(z)- 
TFM(Z)lFm+2(Z) 

Now we compare the terms in series (3.1) and (3.2). The polynomials Um and 

lrm are orthogonal with respect to the weight functions wv(x) = (1 - x2)3/2 and 

w(1) (x) = (1 - x2)w(x), respectively. It is assumed that w(1) (x)/wD(x) is monotone 

decreasing in (0,1), and therefore FW(x)/w(1)(x) is monotone increasing therein. 

Hence we infer from Lemma 2.1 that 

( ) :=Um+1(Z)Um+3(Z) - rI z2 3S2 
T'm( rm(Z)irm+2(Z) Z2 _t 

j=1 3 
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The application of Lemma 2.2 to each multiplier in Tm then yields 

(3.5) max l7m(z) = 17m(zi) for every Q > (1 + V'3). 
Zc9Q 2 

According to Lemma 2.7, for m > 3 we have 

(3.6) max I/m+l (Z) I = ILm+l (Zi) I 

for every L > 3.88 if m is odd, and for every L > 3.72 if m is even. Combining the 
last two conclusions, we obtain that for m > 3 

(3.7) max 1m(Z) =z m(Zi) for every Q > Q*, 

with Q* as defined in Theorem 1.2. Moreover, the observation that the zeros of 7rm 
are located symmetrically with respect to the origin implies 

(3.8) JI4'n+2v(Zi)I = i(-1) Iln+2v(Zi) 

Therefore, for Q > Q* the expansion formula (3.1) yields 
00 

Z w) < >= Cn+2v+2 

K<+ EZ Wc I < 
En+2v z, IOn2 =Z I n2(1;w (3.9) 
ii=0C?2 

< 
Cn+2v+2 

'n2(ij=ILO 

-OCn+2v L,(i 
W 

This completes the proof of Theorem 1.2. D 

Proof of Theorem 1.3. The proof is essentially the same as that of the preceding 
theorem. In this case we compare pairwise the terms in the series (1.12) (with 
a = 2) and (3.3), using the relation 

(3.10) 

cimh(z) 

= 

vmn+i(z) 

-Um+1(Z)Um+3(Z) 

The claim then follows immediately from Lemmas 2.1, 2.2 and 2.6. D 

4. CONCLUDING REMARKS 

1. The most important application of Theorem A and Theorems 1.2 and 1.3 
is in the case of the Gegenbauer weight function wa,(x) = (1 - x2)c, a > -1, 
a f (-1/2,1/2). In this case w,(x) v1- =(1 - X2)c+1/2 and w,(x) / v1- 
(1 -x2) -1/2; hence we immediately obtain the following two corollaries. 

Corollary 4.1. The kernel KnL+2 (.; WI) of the (n + 2)-point Gauss-Lobatto quad- 
rature formula with respect to the Gegenbauer weight function wa(x) = (1 -x2)' 

(a V (-1/2,1/2)) satisfies on every ellipse ?F, with o > Q* 

(4.1) max KZn+2 (Z;wa) I IK (zL;wO ) if a > 1/2 n > 3 

The parameter Q* is as in Theorem A if a c (-1, -1/2], and as in Theorem 1.2 if 
a > 1/2. 
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Corollary 4.2. The kernel K+2j(.; wa) of the (n+ 2) -point Gauss-Lobatto quadra- 
ture formula with double end nodes associated with the Gegenbauer weight function 
WCa(X) = (1-X2)'> (a C (-1, -1/2]) satisfies on every ellipse Se with Q > Q* 

(4.2) MaX i KLo d Lod (4.)max |K+2 (z; w.) =K' (Zr; Wc ) 
ZE?E 

n 2 

The parameter Q* is as in Theorem 1.3. 

2. The conclusions of Corollaries 4.1 and 4.2 in the limit cases a = ?1/2 can be 
sharpened. For the kernel of the Gauss-Lobatto quadrature formula associated with 
the first Chebyshev weight W1/2(X) - (1 - x2)-1/2 Gautschi proved ([1, Theorem 
4.1]) that 

max 1Kn+2(Z; w-1/2)1 = Kn+2(zr; w- 1/2) for all Q > 1. 

For the kernel KL+2 (Z; wi/2) Schira [9] proved that for n > 3 

max IK2 (z; wL/2) |= K42(Zi;w/2) for all Qo> Q(n), 

where the parameter Q(n) is expressed as the unique root of some nonlinear equation 
and satisfies 

lim Q(n) = 1. 

This confirms some empirical results about the behavior of IKL+2 (z; W1/2)1 obtained 
in [1]. 

For the kernel of the Gauss-Lobatto quadrature formula with double end nodes 
with respect to the first Chebyshev weight, Gautschi and Li [3] have proved that 

max IK?+'2 (z; w _1/2) 1 = KL+'d (Zr; W_ 1/2) for all Q>l. 

3. The restriction on Q in Theorem 1.3 appears in order to ensure that Lemma 
2.2 holds true. It was shown by Schira that, in a sense, the value Q* = 2(1 + v) 
in Lemma 2.2 cannot be replaced by any smaller value. 

However, an improvement is possible in Theorem 1.2. The values Q* = 3.88 and 
O* = 3.72 are in fact the smallest values for which we have a proof that t4 and A5 
attain maximal absolute value at z = zi provided Q > Q*. 

One could try to express the critical parameters Q(m) ensuring that 

(4.3) max I ,m+1 (z) I = Jomm+1 (Zi) for all Q > Q(m) 
ZEE 

L 

as solutions of certain equations, as was done in [9]. Alternatively, an upper bound 
for Q(m) can be obtained by a direct application of Lemmas 2.3 and 2.4 to I4m+1 (z) I. 
However, both approaches seem to be quite laborious. 

On the other hand, our method of proof implies that if (4.3) holds true for some 
fixed m > 3 with Q(m) > 2.3, then 

(4.4) max IOm+2j+l (Z) I = J[1m+2j+1 (Zi) I for all Q > Q(m), j = 1, 2,. 

Consequently, for n > 3 and weight functions w satisfying the assumptions of 
Theorem 1.2 we have 

(4.5) max Kn+2J(zi;w) = IKL2o (zi;w) for all ? > o(n) (j = 1, 2, ...). 

The same observation applies to the second case of Corollary 4.1. 



282 DAVID HUNI'ER AND GENO NIKOLOV 

In Table 1 we present the numerical values of o(n) for 3 < n < 30 and n = 60, 100. 

TABLE 1. Values of o(n) 

n 3 4 5 6 7 8 9 10 11 12 
e(n) 3.8318 3.2308 3.0022 2.8791 2.8000 2.7447 2.7036 2.6718 2.6464 2.6256 

n 13 14 15 16 17 18 19 20 21 22 
e(n) 2.6083 2.5937 2.5811 2.5702 2.5607 2.5522 2.5447 2.5380 2.5319 2.5264 

n 23 24 25 26 27 28 29 30 60 100 
e(n) 2.5214 2.5168 2.5126 2.5087 2.5052 2.5019 2.4988 2.4959 2.4548 2.4385 
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